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Abstract

Driven by an increasing prevalence of trackers, ever more IoT sensors, and the declining cost of
computing power, geospatial information has come to play a pivotal role in contemporary pre-
dictive models. While enhancing prognostic performance, geospatial data also has the potential
to perpetuate many historical socio-economic patterns, raising concerns about a resurgence of bi-
ases and exclusionary practices, with their disproportionate impacts on society. Addressing this,
our paper emphasizes the crucial need to identify and rectify such biases and calibration errors in
predictive models, particularly as algorithms become more intricate and less interpretable. The
increasing granularity of geospatial information further introduces ethical concerns, as choosing
different geographical scales may exacerbate disparities akin to redlining and exclusionary zoning.
To address these issues, we propose a toolkit for identifying and mitigating biases arising from
geospatial data. Extending classical fairness definitions, we incorporate an ordinal regression case
with spatial attributes, deviating from the binary classification focus. This extension allows us to
gauge disparities stemming from data aggregation levels and advocates for a less interfering cor-
rection approach. Illustrating our methodology using a Parisian real estate dataset, we showcase
practical applications and scrutinize the implications of choosing geographical aggregation levels
for fairness and calibration measures.

Keywords: Geospatial Data, Fairness, Calibration

1. Introduction

Predictive models are now ubiquitous, churning through huge amounts of data collected by an ever-
increasing number of different sources, and in turn, provide more granular predictions. Particularly,
geospatial data, surging in availability and granularity owing to remote sensing and IoT devices, has
gained popularity within the Machine Learning (ML) community. At the same time, the evaluation
of ML models no longer depend solely on performance metrics such as accuracy but currently also
includes considerations of fairness and calibration within the predictions. A natural question that
then arises from these observations is how the increased presence of geospatial data influences un-
derstanding of our assessment of model calibration and the measurement of fairness in predictions.

An area where geospatial data has long been present in predictive models is real estate pricing.
However, real estate and geospatial locations have a long history of discrimination, spanning from
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denying services, referred to as redlining (Nier I1I, 1998), over exclusionary zoning, which attempts
to limit economic and racial diversity in the first place, to gentrification. Although such practices
are often outlawed in modern societies, the recent surge in the usage of algorithms has renewed
concerns that their predictions could perpetuate biases present in current learned data.

The field of Algorithmic Fairness has developed to understand and measure how specific demo-
graphic groups may face disparate impacts owing to biases with algorithms in a variety of settings
(Agarwal et al., 2018; Chzhen et al., 2020; Denis et al., 2021; Hu et al., 2023a). However, measur-
ing disparities within communities defined by spatial proximity remains challenging, partly because
spatial proximity is often not clearly defined. Additionally, fairness itself is difficult to define given
spatial locations, as location can often proxy for a range of variables, which might be legitimately
used in a model on one side or be the source of undue discrimination on the other side.

Closely linked to fairness considerations are issues that emerge due to the (mis-)calibration of
a model, which results in systematic deviations of predictions from true probabilities and compro-
mises overall reliability. Again, the effects of miscalibration can be distributed differently depending
on geolocation, which may result in new sources of unfairness and biases. Hence, when evaluat-
ing predictive power, a meticulous examination of the disparities between predicted and observed
values is paramount to determine whether the model exhibits underconfidence or overconfidence
(Brahmbhatt et al., 2023), especially with respect to given subgroups. The issue of a non-calibrated
model is further concerning for a variety of prediction tasks, as decision makers might rely heavily
on the initial valuation of predictive models for their final decisions, leading to the anchoring effect
(Tversky and Kahneman, 1974) or misleading interpretation of the given initial valuation.

As modern algorithms become more complex and less interpretable, regulators have started
requiring higher standards of models and their associated outputs. Notable examples include the
GDPR (2018) and the upcoming EU Al Act (2024) in Europe with heightened scrutiny of the jus-
tified use of geospatial data. In light of the aforementioned concerns about both calibration and
fairness, one of our core objectives is to comprehensively understand what actually constitutes “spa-
tial biases”, whether stemming from intentional choices or unintentional factors, as outlined in the
Algorithmic Fairness or Bias literature. We aim to propose an effective framework to mitigate these
effects and ensure the ethical deployment of complex algorithms.

To stay close to a realistic scenario involving a decision maker or regulator, wherein both the
training data and the learning algorithm are not directly accessible, we conduct our study purely
on geospatial indicators, model predictions, and collected labels in an ex-post study. Using a real-
world dataset, we present a process to evaluate when and how disparities correlate on a spatial
level and examine what this implies for both calibration and fairness. For cases in which biases
can be detected, we propose a simple ex-post correction of the model’s predicted values to ensure
compliance with both calibration and fairness while minimizing the overall effect on the predictive
quality. A fundamental issue for this analysis is the choice of the aggregation level for geospatial
effects. On one extreme, the most granular representation could be used; however, given the limited
availability of data, this would most likely lead to estimates with large variances. On the other
extreme, aggregating data at the highest level would mask most of the insights that a more granular
representation could provide (Holtgen and Williamson, 2023). Any inquiry is further complicated
by the absence of consistently defined units of aggregation in most datasets, where regions can have
different sizes or densities.

Considering the absence of a universally accepted level of analysis, we set out to evaluate how
the choice of this level affects our results. As a motivational example, consider Figure 1, which
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depicts the relative error of a model in estimating square meter prices. Although the model seems
to be extremely well-calibrated with small overall errors, there is a spatial correlation among the
residuals. However, evaluating the underlying causes of this situation cannot easily be characterized
by administrative units, demarcated by dashed lines in the graph, and commonly used by decision
makers.
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Figure 1: Relative estimation error per m? in different sub-regions. The values are smoothed across
spatial neighbors to emphasize the spatial correlation as outlined in Section 3.2.

Finally, as mentioned above, geolocation paired with housing has a long history of undesir-
able disparities, which makes the use of location in predictive models prone to perpetuating biases.
Hence, identifying geospatial biases should be one of the priorities for policymakers. Although the
socioeconomic status of neighborhoods can and does change over time, this change is often slow,
as documented by Rosenthal and Ross (2015). For instance, Heblich et al. (2021) showed that pol-
lution levels from the 1800s could still predict the share of low-skilled workers in a neighborhood,
even after the removal of industrial sites responsible for pollution. If such effects can persist in time,
using models trained to replicate past events might only reinforce existing disparities.

1.1. Main contributions

Motivated by the aforementioned ethical concerns, including income segregation, and with the ob-
jective of deepening our understanding of geospatial disparities, their potential negative impacts,
and viable mitigation strategies, we conduct a case study focusing on the Parisian real estate mar-
ket. Our analysis involves comparing the property estimates provided by a real estate agency with
actual observed sale prices. Real estate pricing methodologies are extensively studied and pricing
usually depends on a large number of factors, both directly observable and factors that need to be
proxied for. At the same time, the real estate market has been extensively studied from the perspec-
tive of segregation and other social aspects (Chambers, 1992; Kiel and Zabel, 1996; Myers, 2004;
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Bayer et al., 2017). This makes the field an ideal testing ground for the development of algorithms
that assess geographical disparities in a more general framework.

Although centered on a specific case study, our approach remains agnostic to the type of pre-
dictive models or the variable that is predicted. This broadens the scope of our analysis to include a
more general setting. For example, one might examine predictions for the required number of child
daycare spots compared to actual application numbers, or similarly, anticipated passenger volume
in contrast to the total journeys taken. In each scenario, disparities in calibration and fairness across
regions could lead to variations in recommended policy actions.

More specifically to our case study, we are interested in the error rates of the model. The
average observed price difference is €203 per square meter (or €1179 in absolute terms) relative to
a median sales price of €10,388 per square meter. Although this error is extremely small in a global
context, Figure 1 shows that these errors are not necessarily uniformly distributed, suggesting a
potential inclination of the predictive model to overestimate sale prices in some neighborhoods and
underestimate them in others, even for properties with similar attributes. Given the anchoring effect
of an initial valuation, this might lead to undesirable outcomes. Although estimated and realized
sale prices are expressed on a continuous scale, we opted for the discretization of values to facilitate
the analysis. This approach situates us in an ordinal regression context, enabling the calculation
of fairness metrics such as Equalized Odds. The ordinal regression context does not preclude the
assessment of the model calibration.

In summary, we find that even if a model is globally well-calibrated, there can be significant
differences in fairness metrics in distinct sub-regions. Furthermore, these differences depend on the
size and shape of the area under consideration, which pose issues when not all decisions are based
on the same aggregation level. To counteract this, we extend previous research on post-processing
methods to achieve fairness over a variety of regional groupings. This allows us to change the scores
that can be used for policy decisions regardless of the level of analysis. To help researchers in the
future, we propose a standard toolbox to measure and mitigate biases based on geospatial datasets.

Specifically, the contributions of the present article can be summarized as follows:

1. We conduct an examination of model errors using post-processing approaches, revealing nu-
ances in predictive biases.

2. We contribute by developing a dedicated framework highlighting geospatial disparities in-
duced by predictive models, aiming to improve algorithmic fairness in geographic contexts
and improve the overall understanding of the underlying dynamics.

3. The introduction of a practical case study using Parisian real estate data empowers decision
makers to scrutinize disparities in proposals, fostering informed decision-making, and ensur-
ing equitable assessment of geographic considerations.

We begin by providing an overview of the geographic disparity problem and introducing the as-
sociated notation in Section 2. Subsequently, in Section 3, we conduct numerical experiments using
Parisian real estate data to showcase the intricacies of the issue and to derive associated insights.
Within our comprehensive bias mitigation framework, we illustrate, by an example in Section 4,
how various post-processing techniques can be applied within our contextual framework.



GEOSPATIAL DISPARITIES: A CASE STUDY ON REAL ESTATE PRICES IN PARIS

1.2. Related work

Much of this work aligns with the literature on biases and fairness with geographical considera-
tions. The notion of “(geo)spatial bias” resonates with the previously explored notion of “spatial
equity” (or “spatial fairness”) in Hay (1995), which emphasizes the fair distribution of resources
and opportunities across various geographical areas. This concern has attracted the attention of re-
searchers from different domains, spanning from public health, where the emphasis lies on ensuring
an equitable allocation of medical and health resources to the public (Bigman et al., 2000; Mattei
et al., 2018), to urban greenery, where endeavors are directed towards developing urban parks that
transcend socioeconomic and ethnic boundaries (Comber et al., 2008; Tan and Samsudin, 2017;
Yang et al., 2020). The goal of understanding (Ratz et al., 2023; Hu et al., 2023b) (or mitigating
(Chzhen and Schreuder, 2022; Hu et al., 2023a; Charpentier et al., 2023)) these biases is to scruti-
nize biased scores (or transform them into equitable ones). Following a simple privacy-preserving
framework, we study spatial disparities with limited information about descriptive features and the
learning process of the predictive model. However, we retain data on the geographical location,
true score, and model score, as detailed in the real estate case study in Section 3. This justification
supports the application of post-processing techniques that can be implemented in addition to any
predictive model.

2. Problem statement

In predictive modeling, standard tasks include regression for predicting real-valued outputs and
binary classification for categorization into two classes. In the regression task, predicting real values
poses challenges for label-conditional modeling or measurement because of the nature of continuous
random variables (no mass), which hinders the assessment of the Equalized Odds notion of fairness
defined in the next section. To simplify theoretical considerations and enable the comparison of
classes within a distribution, one effective approach is to discretize the task into a set of bins while
preserving the order of the bins. This practice, often used in decision-making, is known as the
ordinal regression case (see Gutiérrez et al. (2015)). Our objective is to predict outcomes within
an ordered set Y := [K| = {1,..., K}—also known as a form of multi-class classification (see
Tewari and Bartlett 2007; Kolo 2011). More specifically, we aim to understand how predictors
impact different response levels. We denote X C R? the feature space and we let H be the set of all
predictors of the form h : X — ).

Given our assumption that both the predictive model & € H and the data X € X are un-
known (at least partially), the choice of ordinal regression allows for a more robust approach that is
especially effective against skewed distributions with well-positioned cuts for generating bins.

Additionally, we define a sensitive attribute as a characteristic that is considered sensitive be-
cause of its potential to introduce bias or discrimination in decision-making processes. This sen-
sitive attribute, denoted A € A with A := [M] = {1,..., M} is herein defined as a discrete
group representing specific geographic locations, also known as Geospatial Data. The sensitive
attribute A represents a geographical segmentation for which obtaining fair predictions is desirable.
This choice of segmentation may be driven by the nature of the data. Certain geographic indicators
may be provided based on one partitioning, for example, according to political zone delineations,
whereas others may be provided based on a different partitioning, for example, according to admin-
istrative delineations. When creating the dataset used for the predictive task, the modeler must make
choices to group values on a common spatial scale. Additionally, to comply with data protection
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and anonymity rules, the values provided on a certain geographical scale may result from a different
spatial aggregation from one geographic area to another. When a geographic area lacks a sufficient
number of observations, the organization responsible for their dissemination must resort to spatial
aggregation to ensure anonymity. Whether the aggregation is due to common scaling or compliance
with legal rules, the choices made to define geographic segmentation may not be inherently neutral.
This naturally creates a conundrum for any analysis, because the aggregation level of the data can
either hide or emphasize certain aspects inherent in the data.

In this context, our aim is to investigate whether a well-calibrated model might exhibit bias
based on geolocations. To achieve this, we will introduce metrics designed to assess both model
calibration and model unfairness.

Remark 2.1 (The term ““fairness’) In lieu of the term “fairness”, using a more neutral expression
such as “unbiased” or equivalent expressions for “unfairness”would be more apt to use in our
discussion. The intent behind using (un-)fairness is not to suggest a discriminatory usage of the
data per se but rather to emphasize the inequity in under-evaluation. It’s crucial to note that the
term “unfairness” is employed here without a negative connotation, as a not fair outcome might be
positive for some. The decision of using the term “unfairness” is made to maintain consistency with
the established language in the algorithmic fairness literature, where this term is commonly used to
denote disparities, despite the absence of an inherently negative implication in our specific context.

Throughout this article, we represent real-valued tasks as Z or Z and multi-class tasks as Y or

Y.

2.1. Background on Model Calibration

In traditional regression, a model output denoted as Z is considered well-calibrated for Z when
(Kriiger and Ziegel, 2020):

]E[Z|ZA}:Z.

Let (X,Y) be a random tuple with distribution P. In the context of our study, where we focus
on ordinal regression denoted as ) = [K]|, where K > 0 is a positive integer, a model h € H is
deemed well-calibrated in predicting the distribution of confident scores P (Widmann et al., 2019)
if:

P(Y =k|P =p)=py, forallke[K],
where p = (p1, ..., Pk ) and py represents the (confidence) score or probability estimate for class k
under the model h. This calibration concept extends to group-wise calibration when considering a

sensitive attribute (Widmann et al., 2019; Wang et al., 2020). In this scenario, a strongly calibrated
model is achieved when:

P(Y =k|P=p, A=a) =, forallke [K], andforallaec A .

In other words, the model is strongly calibrated if the conditional probability of the true class being
k matches the predicted probability for all classes &, for all geographical regions a. This definition
can be undermined to acquire a weakly calibrated model:

P(Y = argm’?X]f’k] mgxpk =pr, A=a)=pg, forallac A .
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In simpler terms, weak calibration means that the highest predicted probability is used as a threshold
and the model is considered calibrated if the true class matches the highest probability.
Furthermore, we introduce the group-wise measure of calibration error, known in the calibration
literature as the Expected Calibration Error (ECE) (Naeini et al., 2015). We specifically measure
group-wise calibration in its weak form, denoted as Ugc g, as presented below. Note that, in prac-
tical scenarios, the distribution P is not known. Instead, given empirical data (X;,Y;)i—1, . n asn
i.i.d. copies of (X,Y"), we work with the empirical distribution I@’( x.,v;), (or PP for ease of reading),

defined as
. 1<
Pi= oD dxuy) -
i=1

Let the interval [0, 1] be partitioned into B bins based on quantiles of maxy, py values, where each
bin b € [B] is associated with the set Z; containing the indices of instances within that bin. This
partitioning is used in the subsequent definition of the ECE, which is applicable to the multi-class
classification framework and thereby extends to ordinal regression.

Definition 1 (Model calibration in multi-class classification) To quantify the ECE, we introduce
the accuracy and confidence measures within each bin b € [B:

(accuracy) acc(Ly) = ED(Xth)ier(Y = f/) ;  (confidence) conf(Iy) = E(Xiyyi)ielb (mgxﬁk) .

The calibration error measure for a model h € ‘H is then defined as

Upen(h) =~ STy - lace(Ty) — conf(Ty)| |
n
be[B]

and model h is considered (group-wise) well-calibrated i.f.f. Upcp(h) = 0.

The above definition permits the measurement of calibration within a multi-class classification
framework, achieved by evaluating the model’s confidence in predicting a specific class against
the actual frequency of that class in the observed events. This calibration metric can be calculated
within any subregion that includes a sufficient number of datapoints for binning, which is crucial
for understanding the far off predictions in a more localized framework. In real estate valuation,
where the initial model price acts as an anchor for future decisions, achieving good calibration
is therefore essential. Although some error is to be expected, localized variations in error rates
may lead to systematic over- or under-valuation in specific areas due to differences in the locally
prevalent price category, even if the model is globally well-calibrated. To consider such disparities
more specifically, we extend this study beyond calibration alone, with a specific focus on algorithmic
fairness and underlying geospatial disparities.

2.2. Background on Algorithmic Fairness

In the present article, we consider two types of fairness evaluation: Demographic Parity (Calders
et al., 2009) (DP), which asks for independence of the predictive model from the sensitive attribute,
and Equalized Odds (EO) (Hardt et al., 2016), which seeks independence conditional on all values
of the label space. These definitions, classically considered in binary classification tasks, naturally
extend to the multi-class classification framework, as demonstrated in Alghamdi et al. (2022) and
Denis et al. (2021).
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2.2.1. DEMOGRAPHIC PARITY

We let Y be the output of the predictive model A € H defined on X. From the algorithmic fairness
literature, we define the (empirical) unfairness under DP as follows:

Definition 2 (Fairness under Demographic Parity) The unfairness under DP of a classifier h is
quantified by

A A

Upp(h) == ae,rélr}l?é([K] P(Y =klA=a)—P(Y =k)

A model h is called (empirically) exactly fair under DP i.f.f. Upp(h) = 0.

Intuitively, DP serves as a widely adopted measure of unfairness that is applicable to various tasks,
including regression and classification. This measure holds the advantage of being recognized in
legal contexts and regulations. Nevertheless, in situations where the label Y is assumed to be
unbiased, there emerges a preference for a more nuanced measure of unfairness. Specifically, DP
may hinder the realization of an ideal prediction scenario, such as granting loans precisely to those
who are unlikely to default.

2.2.2. EQUALIZED ODDS

We assume knowledge of the true and unbiased label Y. Another notion of fairness is EO, with its
associated unfairness measure defined as follows:

Definition 3 (Fairness under Equalized Odds) The unfairness under EO of a classifier h is quan-
tified by

Upo(h) == max |P(Y =k|Y =K, A=a)-PY =k|Y =F)
a€Ak, k' €[K]

A model h is called (empirically) fair under EO i.f.f. Upo(h) = 0.

Ultimately, considering a model h € H, our objective is to investigate biases related to the
model calibration and unfairness defined above, specifically the measures (Ugcr(h),Upp(h)) or
(Urcr(h),Upo(h)). In the next section, we delve into the case study using Parisian real estate

data, where we designate Y as the estimated price per m? and Y as the sold price per m?.

Remark 2.2 (Achieving calibration and unfairness) Achieving group-wise calibration and EO si-
multaneously has been demonstrated to be impossible, except in highly constrained cases (Kleinberg
et al., 2016, Pleiss et al., 2017) or by relaxing the EO property to proportional equality, leading to
the simultaneous optimization of both fairness and calibration (Brahmbhatt et al., 2023). Similarly,
incorporating notions of fairness through calibration is feasible when employing global calibration
scores (Holtgen and Williamson, 2023). Despite this, the dependencies between calibration and
fairness cannot be generalized, particularly with between-group calibration. Deviations from this
measure may reveal unfairness in certain situations but not in others, depending on the specified
definition of fairness (Loi and Heitz, 2022). As a result, calibration and fairness have been studied
independently, with fairness primarily assessed through the EO definition, among other factors.
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3. Detecting Geographic disparities

We present our main insights through a case study of Parisian real estate, in which we consider dif-
ferent levels of aggregation and highlight how both calibration and fairness-related metrics change
across them. Our main goal is to study disparities localized in sub-regions, between predictions
made, and labels obtained throughout a test period. In this context, we analyze how model error
rates differ across spatial regions, and quantify them using fairness measures. Methods to mitigate
some of these biases will be addressed in Section 4.

3.1. Data

For our illustrations, we use data obtained from Meilleurs Agents, a French Real Estate platform
that produces data on the residential market and operates a free online automatic valuation model
(AVM).! We have access to both the estimated price of the underlying property and realized net
sale price. We consider the realized sale price as the true underlying value Z that we attempt to
approximate with the model prediction Z. Along with the realized and estimated prizes, we also
have access to the approximate location and amount of square meters (m?) of the property. In
total, we obtained approximately 25,700 observations from the Paris Metropolitan Area, of which
approximately 11,600 were located in the city of Paris, collected throughout 2019. We use the prices
per m? to normalize the errors by property size. Further, we restrict our analysis to observations
located within the city of Paris, as there appear to be significant differences in the per m? prices
between the core city (Paris intra-muros) and the surrounding areas. See Figure 10 in the appendix
for a visual representation. We also removed outliers with a price per square meter of over 20,000€
and observations from mostly commercial areas. In all, we then have access to 11,500 observations
after these basic cleaning steps.

Our Data contains geospatial information, aggregated at the IRIS (Ilots Regroupés pour I’ Information
Statistique) level, a statistical unit defined and published by the French National Institute of Statis-
tics and Economic Studies. Each IRIS region represents a clearly defined area within France and
many publicly available economic and societal indicators have been published on this level of gran-
ularity. The population within each unit generally consists of between 1,800 and 5,000 inhabitants,
which live within a homogeneous living environment,” which makes this unit particularly suitable
for our analysis. In total, our observations are divided across 878 iris regions.

3.1.1. DEFINING NEIGHBORS

The city of Paris is divided into 20 administrative units called arrondissements, each grouping be-
tween 14 and 96 IRIS regions. It is important to note that an IRIS region cannot belong to multiple
arrondissements. Much information about real estate is typically aggregated at this level. However,
for our analysis, this unit is too coarse, as there is still considerable heterogeneity within them as
can be seen for example in Figure 1. Instead, we opt for a more flexible definition of spatial regions
that takes advantage of the homogeneity within each IRIS region. As the size of the area of each
IRIS differs considerably,® simply defining higher levels by Euclidean distance from a given point
might pose problems, as it could include many dense but heterogeneous regions on one end of the

1. The source code can be found at (https://github.com/fer-agathe/parisian_real_estate/) (no data available).
2. For more information on IRIS, refer to INSEE (https://insee.fr/en/metadonnees/definition/c1523).
3. By a factor of almost up to 100.
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spectrum or only a few on the other. To take advantage of the differing sizes and homogeneity
within the IRIS regions, we define a neighborhood graph. In its general form, a graph is an ordered
pair G = (V, £) of vertices and edges. In our application, each vertex represents an IRIS region, and
each edge represents a neighboring relation. Here, a neighboring relation is defined as the presence
of an intersection between two polygons, including their boundaries, defining an IRIS region. That
is, edge (i, ) is present in edge set £ if the polygons of regions ¢ and j intersect. The graph can
then be represented as an n x n matrix V/, called the adjacency matrix, where V; ; € {0, 1} with
Vij = 1if (4, j) € £. Thatis, each entry in the adjacency matrix is equal to 1 if two vertices are in a
neighborhood relationship with each other. Representing neighborhood relations using an adjacency
matrix has the advantage that non-intermediate connections can be easily obtained by successively
multiplying the adjacency matrix by itself. That is, all nonzero elements of V2 represent neighbor-
hoods that are either immediately adjacent to a given region (the direct neighbors) or are adjacent to
the direct neighbors (the neighbors of the direct neighbors). This process can be repeated n times to
obtain neighbors that can be reached within an n length path. This provides a more natural way to
define neighborhoods, as with each increasing path length, an entire homogeneous region is added
to the higher-level aggregation. Figure 2 illustrates how the neighborhood set for a particular IRIS
community can be calculated.
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Figure 2: A sampled IRIS region within Paris (left pane) and its immediate adjacent neighbors
(center pane) and the second level neighbors (right pane). The Seine River is depicted in
blue whereas all other regions are depicted in yellow.

3.2. Neighborhood-Based Smoothing

To reveal spatial structures, as shown in Figure 1, the raw data must be processed and filtered.
One reason for this is that the observations are not uniformly distributed across IRIS regions. This
naturally leads to different levels of confidence when summary statistics for each IRIS, such as the
mean relative model error per m?, are considered. The core idea of spatial smoothing is to use an
average over a larger area, which should provide a more robust estimate. Applying a (weighted)
mean function has the effect of a low-pass filter, which removes sharp edges between the IRIS
regions, and hence produces an output that has a more pronounced spatial correlation, revealing the

10
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underlying structure. Kernel based methods are common within spatial analysis (see, e.g., Genebes
et al., 2018). However, as discussed above, in our case, the data is already aggregated at the IRIS
level, which restricts the application of spatial kernel-based smoothing whose bandwidth operates
on Euclidean distances.

As an alternative, we use the constructed neighborhood graph and the path length between
regions as the argument of a weight function, similar to kernel-based methods. That is, for a given
variable observed at IRIS level x, the smoothed value for region r;, denoted as A\, (x;) can be written
as:

n

1

For example, let d(r;, r;) be the path length between regions r; and r;, then a simple way to define
w(r;,rj) is:

%’ if d(i, j) <
w(ry,ry) = {(Hd(”’rﬂ'))p it di, j) < m 2

0, otherwise |,

where p and m are hyperparameters to be selected, similar to the bandwidth operator. As an illustra-
tion, consider Figure 3, where we plot the observed prices per square meter directly. Many regions
present sharp edges or missing data (in gray). Neighborhood-based smoothing can effectively inter-
polate these values and shows the typically observed pattern of prices, which are highest in central
Paris on the south bank of the Seine River and lowest in the northeast of the city. Note that this map
also roughly corresponds to the median income within the regions (see Figure 9 in the appendix for
a visualization).

Although this smoothing allows us to perform a more robust and detailed analysis at the micro
level, it does not seem to introduce larger distortions when re-aggregating at a higher level. For
example, Figure 4 depicts the values obtained from both the raw data and smoothed values when
calculating the mean square meter price per arrondissement. Here, we used neighbors from a dis-
tance of up to five, that is, m = 5 and p = 1 in the weighting of Equation (2). This allowed us to
conduct a sensitivity analysis of the number of IRIS regions included when calculating either the
fairness or calibration metrics.

3.3. Transforming continuous outcomes into ordinal regression predictions

When dealing with a continuous outcome variable, such as predicting real estate prices, calibration
can be assessed by segmenting the regression model predictions into bins or employing nearest
neighbor methods on Z. In this context, the initially continuous price per square meter in Z C R is
transformed into a multi-class variable in ) := [K]. The adaptability to customize the number of
classes is illustrated in Figure 11 in the Appendix. For our analysis, we have selected a setup with
K = 5 classes, determined through quantile binning based on the observed range of price per square
meter Z. We partition the variable set Z into classes using quantiles denoted as {qo, . . . , i }, Where
qi represents the %—th quantile of the data (Y;);=1,... . Each quantity within the interval [gj, gx—_1]
is then assigned to class k, creating a meaningful segmentation of the data distribution in ).

In addition to transforming real values into classes, specific metrics, like the calibration measure
emphasized by ECE in Section 2.1, require the implementation of confidence scores. In line with
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Figure 3: Smoothed square meter prices, corresponding roughly to the wealth level of the inhabi-
tants. This serves as a motivation to analyze the predictions using quantiles in an ordinal
regression framework, as it allows us to stratify the population according to socioeco-
nomic status.

Aggregated Raw Aggregated Smoothed
48.90°N 48.90°N
48.88°N 48.88°N
48.86°N 48.86°N
48.84°N 48.84°N
48.82°N 48.82°N
2.25°E 2.30°E 2.35°E 2.40°E 2.25°E 2.30°E 2.35°E 2.40°E
Mean prices per Arrondissement
5,000 7,500 10,000 12,500 15,000
Figure 4: Re-Aggregated data, left pane, mean per arrondissement when the raw, un-smoothed data

is used to calculate the average price per square meter of real estate. Right pane, results
when the neighbor-smoothed estimates are used. In general, there do not seem to be
large differences between the methods, but the smoothed estimates allow easier and more
robust inference.
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our established notations, these scores, denoted as py, for class k, are calculated using both the real-
valued predictions Z and the transformed observations Y. To be more specific, these scores are
determined based on the distances between each class midpoint and the estimated prices per square
meter Z. Subsequently, these distances are normalized by the length of each class interval. The
softmax function is then applied to these distances, providing confidence scores for all classes and
observations.

3.4. Results on Model Calibration

Whole dataset Random Model 7th arrondissement
(ECE:0.028) (ECE:0.353) (ECE:0.17)

20 20

o
o

Observed square meter prices
)

Observed square meter prices

Observed square meter prices
)

&l
&l

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Estimated square meter prices Estimated square meter prices Estimated square meter prices
52 g s [ 52
[Shhey - Qo SN |
) 0 ) -
208 g — 208
-5
810 a 0.10

Figure 5: Calibration on the whole dataset (left), on the observation from the 7th arrondissement
only (right) and on randomly drawn values (middle); bins defined using quantiles. Prices
are in thousand Euros.

The predictive model used to estimate real estate prices on the whole dataset appears to be
well-calibrated, according to Figure 5, when using quantile binning on the continuous estimated
price. On average, the lowest square meter prices are slightly overvalued, whereas the highest are
slightly undervalued. This suggests that the given model is generally well-calibrated. By focusing
solely on the geographical information of each arrondissement as a region of study, we observe
slight miscalibration in certain areas, such as the 1st and 7th arrondissements (we refer to Table 1),
associated with a calibration error higher than that observed for all of Paris. Despite this, the 7th
arrondissement, even with the highest ECE, demonstrates a level of calibration significantly superior
to that of the random model. This is illustrated in Figure 5, where it can be observed that the
predicted values for the 7th arrondissement are closer to the observed values than for the random
model, indicating a more calibrated model.
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Considering the well-calibrated nature of this model, we now aim to thoroughly assess its Al-
gorithmic Fairness.

3.5. Fairness results
Note that the definition of Ugo(h) is defined over the set of feasible quantiles.
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0.6
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Figure 6: Equalized Odds Measure and Expected Calibration Error for different sizes of neighbor-
hoods for two sample regions, Champs de Mars (on the left) and Montmartre (on the
right).

3.5.1. OVERVIEW BY ADMINISTRATIVE UNITS

Each arrondissement is characterized by unique levels of population density and wealth. Table 1
presents the EO and ECE metrics computed for each arrondissement of Paris. It is important to high-
light that the fairness metric assesses EO by comparing a specific arrondissement to the entirety of
Paris, whereas ECE is calculated directly for each arrondissement. An immediate correlation be-
tween the fairness and calibration metrics is not readily apparent, but certain arrondissements share
similarities in both measurements. For instance, the 7th arrondissement exhibits poor performance
in terms of both fairness and calibration errors, whereas the 14th and 15th arrondissements rank
among the best neighborhoods. Regarding calibration, this can be linked to both the number of ob-
servations in the dataset and, more generally, to population density, with the former arrondissements
having higher measurements, according to the French National Institute of Statistics and Economic
Studies *.

3.5.2. OVERVIEW BY NEIGHBORING CLASSES

Figure 6 illustrates how the calibration (ECE) and fairness (EO) metrics expand as the level of
spatial aggregation increases, starting from the two IRIS regions corresponding to Champs-de-Mars
and Montmartre. The maps represent the areas considered at each level of grouping defined by the
nearest neighbors approach (Section 3.1.1), starting with the first-level neighbors of Champs-de-
Mars (left) and the same for Montmartre (right), ending with the neighbors of level nine. Observing

4. For more information on the characteristics of  arrondissements, refer to INSEE
(https://www.insee. fr/fr/statistiques/zones/1405599).
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the graphs depicting the ECE and EO for each of the two initial IRIS, it becomes apparent that
as the level of aggregation increases, the metrics tend towards zero, which highlights the issue of
gerrymandering. If a user wishes to calculate the calibration or unfairness of their model at a high
level of aggregation, these will not be representative of unfairness measurements in sub-regions of
the dataset, particularly for areas such as Champs-de-Mars. It should be noted that, based on the
EO calculation, the random model (represented by the dashed line) is considered fair, as there is no
distinction between subgroups due to its indiscriminate nature. For the various areas considered in
Figure 6, a connection between fairness and model calibration emerges when examining the trends
of the EO and ECE measurement curves.

Table 1: ECE on the whole dataset : 0.028

Arrond. EO ECE Arrond. EO ECE

1st 0.301 0.188 11th 0.108 0.136
2nd 0.146 0.097 12th 0.115 0.102
3rd 0.319 0.126 13th 0.177 0.052
4th 0.469 0.116 14th 0.070 0.089
5th 0.280 0.131 15th 0.072 0.072
6th 0.637 0.126 16th 0.107 0.055
7th 0.625 0.170 17th 0.085 0.096
8th 0.128 0.157 18th 0.145 0.029
9th 0.117 0.120 19th 0.396 0.078
10th 0.114 0.132 20th 0.242 0.088

Note: Arrond. stands for arrondissement, EO for Equalized Odds, and ECE for Expected Calibration Error Source: Author(s) estimates.

4. Mitigating Geographic Disparities

In this section, we delve into strategies to mitigate the biases mentioned earlier with a specific focus
on addressing DP. Because our framework does not require knowledge of the predictive model or
the data used during its learning process, post-processing mitigation approaches naturally emerge as
the most suitable choices. In our example, we can leverage the constrained optimization approach
proposed in Denis et al. (2021) to enforce the Demographic Parity notion of fairness. This post-
processing method is tailored for multi-class classification tasks, aiming to achieve optimal fair
classifiers with respect to misclassification risk under the DP constraint.

4.1. Mitigation algorithm for Demographic Parity

Recall that p denotes the confidence scores, and assuming the associated predictive model is fairness-
aware, with p(x, a) defined on X x A. In this section, we specifically consider A = {1,2} as a
binary set, where ‘1’ denotes the 12th arrondissement, and ‘2’ represents the rest of Paris. As per
Denis et al. (2021), one can readily recalibrate the outcome for exact fairness (for results in ap-
proximate fairness, we encourage readers to refer to the paper). Consequently, the new fair scores,

denoted as p() = (ﬁgfair), ol ﬁgair)) are then determined by
P (x,a) = B(A = a) - (p(w,0) —a- Ay), forall (w,a) € X x A, 3)
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where this technique is dedicated to enforcing DP-fairness of the overall classification rule by simply
shifting the estimated conditional probabilities in an optimal manner, as dictated by the calibrated
parameters A = (A1,...,A\x) where refer to the paper for more details about its optimization.

Given these new scores, the associated optimal fair predicted class is simply argmax p,(gfalr).

ke[K]

4.2. Real Estate Case Study

After fairness calibration, Figure 7 serves as an example, illustrating how the mitigation procedure
changes the distributions of scores using data from the 12th arrondissement.’ Here, around 60% of
all observations are underestimated by the model; hence we would expect the mitigation procedure
to lift prices slightly. This is visualized in the left pane, where we visualized the whole set of
mitigated prizes. The mitigation procedure works as expected, when comparing the results to Figure
1, one can observe that the regions most associated with a model underestimation get corrected the
most.

Raw Predictions Mitigated Predictions in 12" Arrondissement
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Figure 7: Predictions and mitigation changes when considering the 12" arrondissement (bound-
aries shown in dashed lines).

Note that, with an appropriate post-processing technique, it is also possible to mitigate model
uncalibration or unfairness under the EO constraint in this multi-class classification framework.

5. Conclusion

In this study, we analyzed the impact of spatial aggregation on both model calibration and estimation
unfairness, and how to mitigate such effects. We found that the level of aggregation has a significant
impact on the conclusions drawn from the same data. For example, although some granular levels
of analysis deviate significantly from the overall calibration and fairness level, more aggregated data
presented fewer issues. This naturally poses a conundrum when choosing the level of analysis using

5. The source code can be found at (https://github.com/fer-agathe/parisian_real _estate/).
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spatial data available at a more granular level. To smooth out estimates and regroup areas of analysis
when the underlying geospatial data is of varying sizes, we developed a graph-based neighborhood
construction that also allows smoothing out estimates, similar to kernel-based methods. We then
proposed a methodology to mitigate effects stemming from under- or overvaluations in certain ge-
ographical areas. The proposed methods are both computationally efficient and work on both small
and large data alike.

Acknowledgments

Ewen Gallic acknowledges that the project leading to this publication has received funding from the
French government under the “France 2030 investment plan managed by the French National Re-
search Agency (reference: ANR-17-EURE-0020) and from Excellence Initiative of Aix-Marseille
University — A*MIDEX. Francois Hu acknowledges that the project is funded by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) Emerging Infectious Diseases Mod-
elling Initiative (EIDM), awarded to the Mathematics for Public Health (MfPH) program.

References

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A re-
ductions approach to fair classification. In International conference on machine learning, pages
60-69. PMLR, 2018.

Wael Alghamdi, Hsiang Hsu, Haewon Jeong, Hao Wang, Peter Michalak, Shahab Asoodeh, and
Flavio Calmon. Beyond adult and compas: Fair multi-class prediction via information projection.
Advances in Neural Information Processing Systems, 35:38747-38760, 2022.

Patrick Bayer, Marcus Casey, Fernando Ferreira, and Robert McMillan. Racial and ethnic price
differentials in the housing market. Journal of Urban Economics, 102:91-105, 2017. ISSN
0094-1190.

David Bigman, Uwe Deichmann, et al. Spatial indicators of access and fairness for the location of
public facilities. Geographical targeting for poverty alleviation: methodology and applications.
The World Bank, Washington, DC, pages 181-206, 2000.

Anand Brahmbhatt, Vipul Rathore, Parag Singla, et al. Towards fair and calibrated models. arXiv
preprint arXiv:2310.10399, 2023.

T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints. In
IEEFE international conference on Data mining, 2009.

Daniel N. Chambers. The racial housing price differential and racially transitional neighborhoods.
Journal of Urban Economics, 32(2):214-232, 1992. ISSN 0094-1190.

Arthur Charpentier, Francois Hu, and Philipp Ratz. Mitigating discrimination in insurance with
wasserstein barycenters, 2023.

E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Fair regression with wasserstein barycen-
ters. In Advances in Neural Information Processing Systems, 2020.

17



MACHADO HU RATZ GALLIC CHARPENTIER

Evgenii Chzhen and Nicolas Schreuder. A minimax framework for quantifying risk-fairness trade-
off in regression. The Annals of Statistics, 50(4):2416-2442, 2022.

Alexis Comber, Chris Brunsdon, and Edmund Green. Using a gis-based network analysis to de-
termine urban greenspace accessibility for different ethnic and religious groups. Landscape and
urban planning, 86(1):103-114, 2008.

Christophe Denis, Romuald Elie, Mohamed Hebiri, and Frangois Hu. Fairness guarantee in multi-
class classification. arXiv preprint arXiv:2109.13642, 2021.

LAURE Genebes, AURIANE Renaud, and FRANCOIS Sémécurbe. Spatial smoothing. Handbook
of Spatial Analysis: Theory and Application with R.; Loonis, V., Bellefon, MP, Eds, pages 205—
229, 2018.

Pedro Antonio Gutiérrez, Maria Perez-Ortiz, Javier Sanchez-Monedero, Francisco Fernandez-
Navarro, and Cesar Hervas-Martinez. Ordinal regression methods: survey and experimental
study. IEEE Transactions on Knowledge and Data Engineering, 28(1):127-146, 2015.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In Neural
Information Processing Systems, 2016.

Alan M Hay. Concepts of equity, fairness and justice in geographical studies. Transactions of the
Institute of British Geographers, pages 500-508, 1995.

Stephan Heblich, Alex Trew, and Yanos Zylberberg. East-side story: Historical pollution and per-
sistent neighborhood sorting. Journal of Political Economy, 129(5):1508-1552, 2021.

Benedikt Holtgen and Robert C Williamson. On the richness of calibration. In Proceedings of the
2023 ACM Conference on Fairness, Accountability, and Transparency, pages 1124-1138, 2023.

Francois Hu, Philipp Ratz, and Arthur Charpentier. Fairness in multi-task learning via wasserstein
barycenters. In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and
Francesco Bonchi, editors, Machine Learning and Knowledge Discovery in Databases: Research
Track, pages 295-312. Springer Nature Switzerland, 2023a.

Francois Hu, Philipp Ratz, and Arthur Charpentier. A sequentially fair mechanism for multiple
sensitive attributes. arXiv preprint arXiv:2309.06627, 2023b.

Katherine A. Kiel and Jeffrey E. Zabel. House price differentials in u.s. cities: Household and
neighborhood racial effects. Journal of Housing Economics, 5(2):143-165, 1996. ISSN 1051-
1377.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair deter-
mination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Brian Kolo. Binary and multiclass classification. Lulu. com, 2011.

Fabian Kriiger and Johanna F. Ziegel. Generic conditions for forecast dominance. Journal of
Business & Economic Statistics, 39(2021):972-983, 2020.

18



GEOSPATIAL DISPARITIES: A CASE STUDY ON REAL ESTATE PRICES IN PARIS

Michele Loi and Christoph Heitz. Is calibration a fairness requirement? an argument from the point
of view of moral philosophy and decision theory. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, pages 20262034, 2022.

Nicholas Mattei, Abdallah Saffidine, and Toby Walsh. Fairness in deceased organ matching. In
Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics, and Society, pages 236-242,2018.

Caitlin Knowles Myers. Discrimination and neighborhood effects: understanding racial differentials
in us housing prices. Journal of Urban Economics, 56(2):279-302, 2004. ISSN 0094-1190.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Charles L Nier III. Perpetuation of segregation: Toward a new historical and legal interpretation of
redlining under the fair housing act. J. Marshall L. Rev., 32:617, 1998.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. Advances in neural information processing systems, 30, 2017.

Philipp Ratz, Frangois Hu, and Arthur Charpentier. Fairness explainability using optimal transport
with applications in image classification, 2023.

Stuart S Rosenthal and Stephen L Ross. Change and persistence in the economic status of neigh-
borhoods and cities. Handbook of regional and urban economics, 5:1047-1120, 2015.

Puay Yok Tan and Rosita Samsudin. Effects of spatial scale on assessment of spatial equity of urban
park provision. Landscape and Urban Planning, 158:139-154, 2017.

Ambuj Tewari and Peter L Bartlett. On the consistency of multiclass classification methods. Journal
of Machine Learning Research, 8(5), 2007.

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases: Biases in
judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157):1124-1131,
1974. ISSN 1095-9203.

Zeyu Wang, Klint Qinami, loannis Christos Karakozis, Kyle Genova, Prem Nair, Kenji Hata, and
Olga Russakovsky. Towards fairness in visual recognition: Effective strategies for bias mitigation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
8919-8928, 2020.

David Widmann, Fredrik Lindsten, and Dave Zachariah. Calibration tests in multi-class classifica-
tion: A unifying framework. Advances in neural information processing systems, 32, 2019.

Guang Yang, Yaolong Zhao, Hanfa Xing, Yingchun Fu, Guilin Liu, Xinyi Kang, and Xin Mai.
Understanding the changes in spatial fairness of urban greenery using time-series remote sens-
ing images: A case study of guangdong-hong kong-macao greater bay. Science of The Total
Environment, 715:136763, 2020.

19



MACHADO HU RATZ GALLIC CHARPENTIER

Appendix A. Supplementary Graphical Results

In this section, we provide additional figures to enhance understanding of the main content, offering
complementary insights.

A.1. Density of Observations

Since the number of observations in our data are not uniformly distributed across all available IRIS
codes, significant differences arise in the variance of, for example, mean estimates. Whereas regions
on the northern bank of the Seine River appear to have a more liquid market, other regions to the
east and south have fewer sales reported.
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Figure 8: Number of available observations, smoothed using the neighborhood method.

A.2. Wealth level

As mentioned throughout the text, the wealth level per IRIS also corresponds roughly to the price
per square meter. Many other indicators, such as the share of social housing also strongly correlated
spatially with the average price per square meter of real estate.
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Figure 9: Estimated Income per IRIS region, smoothed using the neighborhood method.
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A.3. Distribution of m? prices

We opted to only include data from IRIS regions within the city of Paris itself, as there seem to
be significant differences between the mean and shape of the overall distributions of square meter

prices.
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Figure 10: Price per square meter in different areas of our data. Paris intra-muros refers to the 20
arrondissements that constitute the core of the city, Ile de France refers to the remaining

metropolitan area.
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A.4. Calibration measurement
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