3  Fast Transport on a Grid with Numerical Covariates

Objectives

In this chapter, we illustrate the interpretable counterfactual fairness methodology based on sequential transport on simulated data, using our algorithm. Note that this algorithm works only for numerical covariates.

Required packages and definition of colours.
library(tidyverse)
library(ks)
library(dichromat)
library(expm)
colours <- c(
  `0` = "#5BBCD6", 
  `1` = "#FF0000", 
  A = "#00A08A", 
  B = "#F2AD00", 
  with = "#046C9A", 
  without = "#C93312", 
  `2` = "#0B775E"
)
# Colour scale from colour of class 0 to class 1
colfunc <- colorRampPalette(c(colours["0"], colours["1"]))
scl <- scales::alpha(colfunc(9),.9)

3.1 Data Generation

Consider a causal structural model with a sensitive attribute \(s\) with no parents, two legitimate features \(x_1\) and \(x_2\), and an outcome \(y\).

Let us draw 100 observation per group. For group 0, we draw values from a multivariate Gaussian distribution with mean -1 and the following variance-covariance matrix: \(\Sigma_0 = \begin{bmatrix}1.2^2 & \frac{1.2^2}{2}\\ \frac{1.2^2}{2} & 1.2^2\end{bmatrix}\). For group 1, we draw values from a multivariate Gaussian distribution with mean 1.5 and with the following variance-covariance matrix: \(\Sigma_0 = \begin{bmatrix}.9^2 & -\frac{4\times .9^2}{10}\\ -\frac{4 \times .9^2}{2} & .9^2\end{bmatrix}\).

# Number of observations per group
set.seed(123) # set the seed for reproductible results
n <- 100

# First bivariate Gaussian distribution: group s=0
M0 <- c(-1, -1)
S0 <- matrix(c(1, .5, .5,1) * 1.2^2, 2, 2)
X0 <- mnormt::rmnorm(n, M0, S0)
D_SXY_0 <- data.frame(
  S = 0,
  X1 = X0[, 1],
  X2 = X0[, 2]
)

# Second bivariate Gaussian distribution: group s=1
M1 <- c(1.5, 1.5)
S1 <- matrix(c(1, -.4, -.4, 1) * .9^2, 2, 2)
X1 <- mnormt::rmnorm(n, M1, S1)
D_SXY_1 <- data.frame(
  S = 1,
  X1 = X1[,1],
  X2 = X1[,2]
)

Assume the response variable, \(Y\), to be a binary variable that depends on the covariates of each group. More specifically, assume that it is drawn from a Bernoulli distribution with probability of occurrence being linked through a logistic function to \(x_1\) and \(x_2\), i.e., \(Y \sim \mathcal{B}(p(S))\), where \(p(S)\) differs among groups: \[ p(S) = \begin{cases} \frac{\exp{(\eta_0})}{1+\exp{(\eta_0)}}, & \text{if } S = 0,\\ \frac{\exp{(\eta_1})}{1+\exp{(\eta_1)}}, & \text{if } S = 1, \end{cases} \] where \[ \begin{cases} \eta_0 = \frac{1.2 x_1 + 1.6x2}{2}\\ \eta_1 = \frac{.8 x_1 + 2.4x2}{2}. \end{cases} \]

# Drawing random binary response variable Y with logistic model for each group
eta_0 <- (D_SXY_0$X1 * 1.2 + D_SXY_0$X2 / 2 * .8) / 2
eta_1 <- (D_SXY_1$X1 * .8 + D_SXY_1$X2 / 2 * 1.2) / 2
p_0 <- exp(eta_0) / (1 + exp(eta_0))
p_1 <- exp(eta_1) / (1 + exp(eta_1))
D_SXY_0$Y <- rbinom(n, size = 1, prob = p_0)
D_SXY_1$Y <- rbinom(n, size = 1, prob = p_1)

We merge the two datasets in a single one

D_SXY <- rbind(D_SXY_0, D_SXY_1)

And we create two datasets that contain individuals from group 0 only, and individuals from group 1 only:

# Dataset with individuals in group 0 only
D_SXY0 <- D_SXY[D_SXY$S == 0, ]
# Dataset with individuals in group 1 only
D_SXY1 <- D_SXY[D_SXY$S == 1,]

For illustration, we would like to display the contour of the density in each group on the graphs. To do so, we rely on a kernel density estimation:

# Computation of smoothing parameters (bandwidth) for kernel density estimation
H0 <- Hpi(D_SXY0[, c("X1","X2")])
H1 <- Hpi(D_SXY1[, c("X1","X2")])

# Calculating multivariate densities in each group
f0_2d <- kde(D_SXY0[, c("X1","X2")], H = H0, xmin = c(-5, -5), xmax = c(5, 5))
f1_2d <- kde(D_SXY1[, c("X1","X2")], H = H1, xmin = c(-5, -5), xmax = c(5, 5))

3.2 Optimal Transport

First, for comparison purposes, since \(X_1\) and \(X_2\) are drawn from a multivariate Gaussian distribution, we can compute the transported values using the closed form formula.

AA <- sqrtm(S0) %*% S1 %*% (sqrtm(S0))
AA <- solve(sqrtm(S0)) %*% sqrtm(AA) %*% solve((sqrtm(S0)))
OT <- function(x) as.vector(M1 + AA %*% (x - M0))
transport_ot <- t(apply(D_SXY_0[, c("X1", "X2")], 1, OT))
head(transport_ot)
          [,1]      [,2]
[1,] 1.1430798 1.2649116
[2,] 2.7236725 1.6419332
[3,] 0.9081769 3.0476527
[4,] 2.3834575 0.3864673
[5,] 1.1289562 1.0649093
[6,] 2.3374791 1.8850306

3.3 Hypothetical Model

Assume the scores obtained from a logistic regression write: \[ m(x_1,x_2,s)=\big(1+\exp\big[-\big((x_1+x_2)/2 + \boldsymbol{1}(s=1)\big)\big]\big)^{-1}. \]

#' Logistic regression
#' 
#' @param x1 first numerical predictor
#' @param x2 second numerical predictor
#' @param s sensitive attribute (0/1)
logistique_reg <- function(x1, x2, s) {
  eta <- (x1 + x2) / 2 - s
  exp(eta) / (1 + exp(eta))
}

3.4 Illustrative example: small grid

We have two features \(x_1\) and \(x_2\) (i.e., \(\boldsymbol{v} = \{x_1, x_2\}\)) that need to be transported from group \(s=0\) to group \(s=1\). We will therefore use a grid in dimension 2 to apply our algorithm. Recall that we assume that \(x_1\) depends on \(s\) only, and that \(x_2\) depends on both \(x_1\) and \(s\). Hence, to transport \(x_2\), we need to transport \(x_1\) before.

3.4.1 Transport of \(x_1\)

We transport the first dimension. In the notations of our algorithm, \(j = x_1\).

For now, we define \(k=10\) cells in each dimension (we will use 500 after), to obtain \(\boldsymbol{g}_{x_1|s}\) To define the coordinates of the grid, we expand the domain of observed values in each value by a value \(h\) that we set to .2 here.

n_grid_example <- 10
h <- .2

The coordinates of the cells \(\boldsymbol{g}_{x_1|s=0}\)

vx1_example_0 <- seq(
  min(D_SXY_0$X1) - h, 
  max(D_SXY_0$X1) + h, 
  length = n_grid_example + 1
)
vx1_example_0 # coordinates for the cells in dimension 1 for group 0
 [1] -3.6638967 -3.1150270 -2.5661574 -2.0172878 -1.4684182 -0.9195485
 [7] -0.3706789  0.1781907  0.7270603  1.2759300  1.8247996

The coordinates of the cells \(\boldsymbol{g}_{x_1|s=1}\)

vx1_example_1 <- seq(
  min(D_SXY_1$X1) - h, 
  max(D_SXY_1$X1) + h, 
  length = n_grid_example + 1
)
vx1_example_1 # coordinates for the cells in dimension 1 for group 1
 [1] -0.9193084 -0.4398679  0.0395725  0.5190129  0.9984534  1.4778938
 [7]  1.9573343  2.4367747  2.9162151  3.3956556  3.8750960

And we extract the middle of the cells:

vx1_example_0_mid <- 
  (vx1_example_0[2:(1 + n_grid_example)] + vx1_example_0[1:(n_grid_example)]) / 2
vx1_example_1_mid <- 
  (vx1_example_1[2:(1 + n_grid_example)] + vx1_example_1[1:(n_grid_example)]) / 2

vx1_example_0_mid # middle cells in dimension 1 for group 0
 [1] -3.3894619 -2.8405922 -2.2917226 -1.7428530 -1.1939833 -0.6451137
 [7] -0.0962441  0.4526255  1.0014952  1.5503648
vx1_example_1_mid # middle cells in dimension 1 for group 1
 [1] -0.6795882 -0.2001477  0.2792927  0.7587332  1.2381736  1.7176140
 [7]  2.1970545  2.6764949  3.1559354  3.6353758
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx1_example_0*0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 4), ylim = c(.5, 1.7)
)
axis(1)
for(i in 1:n_grid_example) {
  rect(vx1_example_0[i], .5, vx1_example_0[i+1], 1, border="grey")
}
points(D_SXY_0$X1, y = rep(.6, nrow(D_SXY_0)), col = alpha(colours["A"], .3), pch = 19, cex = .2)
points(vx1_example_0_mid, y = rep(.75, n_grid_example), col = colours["A"], pch = 4, cex = 1.5)

for(i in 1:n_grid_example) {
  rect(vx1_example_1[i], 1.1, vx1_example_1[i+1], 1.6, border="grey")
}

points(D_SXY_1$X1, y = rep(1.2, nrow(D_SXY_1)), col = alpha(colours["B"], .3), pch = 19, cex = .2)
points(vx1_example_1_mid, y = rep(1.35, n_grid_example), col = colours["B"], pch = 4, cex = 1.5)
Figure 3.1: Example with a grid with 10 cells created in each group (0 in green and 1 in yellow). The observed values are represented by the dots. The crosses represent the millde of the cells.

Imagine that we want to transport the following individual:

id_indiv <- 2
indiv <- D_SXY_0[id_indiv, ]
indiv
  S      X1          X2 Y
2 0 0.87045 0.008499458 1

Instead of being in group \(s=0\), we would like it to be in group \(s=1\). Assume here that we want to transport its \(x_1\) characteristic.

Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx1_example_0*0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 4), ylim = c(.5, 1.7)
)
axis(1)
for(i in 1:n_grid_example) {
  rect(vx1_example_0[i], .5, vx1_example_0[i+1], 1, border="grey")
}
points(D_SXY_0$X1, y = rep(.6, nrow(D_SXY_0)), col = alpha(colours["A"], .3), pch = 19, cex = .2)
points(vx1_example_0_mid, y = rep(.75, n_grid_example), col = colours["A"], pch = 4, cex = 1.5)

for(i in 1:n_grid_example) {
  rect(vx1_example_1[i], 1.1, vx1_example_1[i+1], 1.6, border="grey")
}

points(D_SXY_1$X1, y = rep(1.2, nrow(D_SXY_1)), col = alpha(colours["B"], .3), pch = 19, cex = .2)
points(vx1_example_1_mid, y = rep(1.35, n_grid_example), col = colours["B"], pch = 4, cex = 1.5)

points(D_SXY_0[id_indiv, "X1"], .6, col = "red", pch = 19, cex = 1.5)
Figure 3.2: The individual from group \(s=0\) for which we want to get a counterfactual

We identify in which cell of the grid that individual belongs, indexed \(i_0\):

x1 <- D_SXY_0[id_indiv, "X1"]
(i_0 <- which.min(abs(vx1_example_0_mid - x1)))
[1] 9
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx1_example_0*0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 4), ylim = c(.5, 1.7)
)
axis(1)
for(i in 1:n_grid_example) {
  rect(vx1_example_0[i], .5, vx1_example_0[i+1], 1, border="grey")
}
points(D_SXY_0$X1, y = rep(.6, nrow(D_SXY_0)), col = alpha(colours["A"], .3), pch = 19, cex = .2)
points(vx1_example_0_mid, y = rep(.75, n_grid_example), col = colours["A"], pch = 4, cex = 1.5)

for(i in 1:n_grid_example) {
  rect(vx1_example_1[i], 1.1, vx1_example_1[i+1], 1.6, border="grey")
}

points(D_SXY_1$X1, y = rep(1.2, nrow(D_SXY_1)), col = alpha(colours["B"], .3), pch = 19, cex = .2)
points(vx1_example_1_mid, y = rep(1.35, n_grid_example), col = colours["B"], pch = 4, cex = 1.5)

# Individual of interest
points(D_SXY_0[id_indiv, "X1"], .6, col = "red", pch = 19, cex = 1.5)

# Cell in which the individual belongs to
rect(vx1_example_0[i_0], .5, vx1_example_0[i_0+1], 1, border="red")
Figure 3.3: The cell for the \(x_1\) dimension in which that individual belongs to

We need to find the corresponding cell in the grid of the other group, \(\boldsymbol{g}_{x_1|s=1}\). The correspondence is based on quantiles. First, we compute the c.d.f. at each coordinate of the grid: \(F_{x_1|s=0}\).

FdR1_0 <- Vectorize(function(x) mean(D_SXY_0$X1 <= x))
f1_0_example <- FdR1_0(vx1_example_0)
f1_0_example
 [1] 0.00 0.01 0.08 0.18 0.33 0.52 0.72 0.86 0.94 0.97 1.00

The c.d.f. in the identified cell, \(F_{x_1|s=0}[i_0]\), is:

(p <- f1_0_example[i_0])
[1] 0.94
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx1_example_0*0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 4), ylim = c(.5, 1.7)
)
axis(1)
for(i in 1:n_grid_example) {
  rect(
    vx1_example_0[i], .5, vx1_example_0[i+1], 1, border="grey",
    # Add colours depending on c.d.f.
    col = scales::alpha(colours["A"], f1_0_example[i])
  )
}
points(D_SXY_0$X1, y = rep(.6, nrow(D_SXY_0)), col = alpha(colours["A"], .3), pch = 19, cex = .2)
points(vx1_example_0_mid, y = rep(.75, n_grid_example), col = colours["A"], pch = 4, cex = 1.5)

for(i in 1:n_grid_example) {
  rect(vx1_example_1[i], 1.1, vx1_example_1[i+1], 1.6, border="grey")
}

points(D_SXY_1$X1, y = rep(1.2, nrow(D_SXY_1)), col = alpha(colours["B"], .3), pch = 19, cex = .2)
points(vx1_example_1_mid, y = rep(1.35, n_grid_example), col = colours["B"], pch = 4, cex = 1.5)

# Point of interest
x1 <- D_SXY_0[id_indiv, "X1"]
points(D_SXY_0[id_indiv, "X1"], .6, col = "red", pch = 19, cex = 1.5)

# Cell in which the individual belongs to
rect(vx1_example_0[i_0], .5, vx1_example_0[i_0+1], 1, border="red")
Figure 3.4: The colour of the cells depend on the cumulative distribution for the point in the middle of the grid

We need to find the quantile level \(u\) that is the closest to the probability computed previously (p). The quantile levels are the following:

(u <- (1:n_grid_example) / (n_grid_example + 1))
 [1] 0.09090909 0.18181818 0.27272727 0.36363636 0.45454545 0.54545455
 [7] 0.63636364 0.72727273 0.81818182 0.90909091

And the closest quantile level is:

(i_1 <- which.min(abs(u - p)))
[1] 10

We need to find the quantile for that level in the distribution of the other group. To that end, we compute the quantiles of \(x_1\) in group \(s=1\), i.e., \(Q_{x_1|s=1}\):

Qtl1_1 <- Vectorize(function(x) quantile(D_SXY_1$X1, x))
(q1_1_example <- Qtl1_1(u))
9.090909% 18.18182% 27.27273% 36.36364% 45.45455% 54.54545% 63.63636% 72.72727% 
0.6067436 0.8658632 1.1029531 1.1904745 1.4091226 1.6073207 1.8403510 2.2358935 
81.81818% 90.90909% 
2.4727195 2.9386579 

The transported value for \(x_1\), \(x_1^* = T_1^*(x_1)\), is thus:

(x1star <- q1_1_example[i_1])
90.90909% 
 2.938658 

And that point belongs in the following cell \(\boldsymbol{g}_{x_1, k_1|s=0}\):

(k1 <- which.min(abs(vx1_example_1_mid - x1star)))
[1] 9
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx1_example_0*0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 4), ylim = c(.5, 1.7)
)
axis(1)
for(i in 1:n_grid_example) {
  rect(
    vx1_example_0[i], .5, vx1_example_0[i+1], 1, border="grey",
    col = scales::alpha(colours["A"], f1_0_example[i])
  )
}
points(D_SXY_0$X1, y = rep(.6, nrow(D_SXY_0)), col = alpha(colours["A"], .3), pch = 19, cex = .2)
points(vx1_example_0_mid, y = rep(.75, n_grid_example), col = colours["A"], pch = 4, cex = 1.5)

for(i in 1:n_grid_example) {
  rect(vx1_example_1[i], 1.1, vx1_example_1[i+1], 1.6, border="grey",
       col = scales::alpha(colours["B"], u[i])
  )
}

points(D_SXY_1$X1, y = rep(1.2, nrow(D_SXY_1)), col = alpha(colours["B"], .3), pch = 19, cex = .2)
points(vx1_example_1_mid, y = rep(1.35, n_grid_example), col = colours["B"], pch = 4, cex = 1.5)

# Individual of interest
x1 <- D_SXY_0[id_indiv, "X1"]
points(D_SXY_0[id_indiv, "X1"], .6, col = "red", pch = 19, cex = 1.5)

# Cell in which the individual belongs to
rect(vx1_example_0[i_0], .5, vx1_example_0[i_0+1], 1, border="red")

# Corresponding cell in other group, based on quantile
rect(vx1_example_1[k1], 1.1, vx1_example_1[k1+1], 1.6, border="blue")

points(x1star, y = 1.35, col = "black", pch = 19, cex = 1.5)
Figure 3.5: The matched cell in the other group, and the transport of \(x_1\) from \(s=0\) to \(s=1\)

3.4.2 Transport of \(x_2\)

Now that we have transported \(x_1\) for our individual, we need to transport \(x_2\), to obtain \(x_2^* = T_2^*(x_2 | x_1)\).

As before, we define coordinates for a grid in the second dimension, beginning with \(\boldsymbol{g}_{x_2 | s = 0}\)

vx2_example_0 <- seq(
  min(D_SXY_0$X2) - h, 
  max(D_SXY_0$X2) + h, 
  length = n_grid_example + 1
)
vx2_example_0 # coordinates for the cells in dimension 2 for group 0
 [1] -3.8943774 -3.2944261 -2.6944748 -2.0945235 -1.4945722 -0.8946210
 [7] -0.2946697  0.3052816  0.9052329  1.5051842  2.1051355

and then \(\boldsymbol{g}_{x_2 | s = 1}\):

vx2_example_1 <- seq(
  min(D_SXY_1$X2) - h, 
  max(D_SXY_1$X2) + h, 
  length = n_grid_example + 1
)
vx2_example_1 # coordinates for the cells in dimension 2 for group 1
 [1] -0.9319286 -0.3678532  0.1962223  0.7602977  1.3243731  1.8884485
 [7]  2.4525239  3.0165994  3.5806748  4.1447502  4.7088256

The grids can be drawn, and we can display the contour:

Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
Figure 3.6: The individual of interest with its two coordinates, and the two estimated densities (one for \(s=0\) and one for \(s=1\))

The cell in the dimension \(x_1\) in which the point of interest belongs to has not changed:

# identify closest cell in s=0 for x1 coordinate
(k0 <- which.min(abs(vx1_example_0_mid - x1)))
[1] 9

And we need to find the cell in the other dimension this point belongs to. Let us define the midpoints in the second dimension in group \(s=1\):

vx2_example_1_mid <- 
  (vx2_example_1[2:(1 + n_grid_example)] + vx2_example_1[1:(n_grid_example)]) / 2
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
# identified cells in the dimension x1, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[1], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[n_grid_example+1],
  border="red"
)
# corresponding cells in the same dimension, in group 1
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[1], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[n_grid_example+1],
  border="blue"
)
# midpoints of these cells
points(
  rep(vx1_example_1_mid[k0],n_grid_example), vx2_example_1_mid, 
  col = colours["B"], pch = 4
)
Figure 3.7: The transported point from \(s=0\) to \(s=1\) when sequentially transporting by \(x_1\) and then by \(x_2 | x_1\) will be in the blue rectangle

The coordinate \(x_2\) of the individuals is:

(x2 <- indiv$X2)
[1] 0.008499458

And the cell in which this point belongs to in the grid for that dimension (\(\boldsymbol{g}_{x_2|s=0}\)) needs to be identified. To do so, we look at how close the point is from each middle point of the grid from the second coordinate in group \(s=0\):

vx2_example_0_mid <- 
  (vx2_example_0[2:(1 + n_grid_example)] + vx2_example_0[1:(n_grid_example)]) / 2
# identify closest cell in s=0 for x2 coordinate
(i_0 <- which.min(abs(vx2_example_0_mid - x2)))
[1] 7
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
# identified cells in the dimension x1, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[1], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[n_grid_example+1],
  border="red"
)
# Identified cell in the dimension x2, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[i_0], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[i_0+1],
  border = "red", lwd = 2
)
# corresponding cells in the same dimension, in group 1
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[1], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[n_grid_example+1],
  border="blue"
)
# midpoints of these cells
points(
  rep(vx1_example_1_mid[k0],n_grid_example), vx2_example_1_mid, 
  col = colours["B"], pch = 4
)
Figure 3.8: The cell in which the inddividual belongs to in the second coordinate is identified

To transport \(x_2\) conditionally on \(x_1\), we need to compute the c.d.f. of \(x_2\) in group 0 conditional on \(x_1\), i.e., \(F_{x_2|s=0}[\cdot, \boldsymbol{i}]\) (where \(\boldsymbol{i}=\{1, \ldots, 10\}\) here, since \(x_2\) only has one parent among \(\boldsymbol{v}\)). To do so, we use an iterative process: we loop over the grid in the dimension of \(x_1\) (the parent), and then, for each cell, we identify the points in the neighborhood with respect to their \(x_1\) coordinates, and then, we can compute the c.d.f. at each point of the grid in the second dimension.

During the iteration process, we also compute the quantiles of \(x_2\) conditional on \(x_1\), but in the group \(s=1\), i.e., \(Q_{x_2|s=1}[\cdot,\boldsymbol{i}]\).

# setting a neighborhood
d <- .5
F2_0 <- matrix(NA, n_grid_example, n_grid_example)
Q2_1 <- matrix(NA, n_grid_example, n_grid_example)

for (i in 1:n_grid_example) {
  # Identify points in group 0 close to the coordinate x1 of the midpoint of
  # the current cell
  idx1_0 <- which(abs(D_SXY_0$X1 - vx1_example_0_mid[i]) < d)
  # c.d.f.
  FdR2_0 <- Vectorize(function(x) mean(D_SXY_0$X2[idx1_0] <= x))
  F2_0[,i] <- FdR2_0(vx2_example_0_mid)
  # Identify points in group 1 close to the coordinate x1 of the midpoint of
  # the current cell
  idx1_1 <- which(abs(D_SXY_1$X1 - vx1_example_1_mid[i]) < d)
  Qtl2_1 <- Vectorize(function(x) quantile(D_SXY_1$X2[idx1_1], x))
  Q2_1[,i] = Qtl2_1(u)
}

Let us visualize the estimated c.d.f. in each cell of the complete grid in group 0:

Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4),
      col = alpha(colours["A"],  F2_0[i,j]/2)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
# identified cells in the dimension x1, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[1], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[n_grid_example+1],
  border="red"
)
# Identified cell in the dimension x2, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[i_0], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[i_0+1],
  border = "red", lwd = 2
)
# corresponding cells in the same dimension, in group 1
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[1], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[n_grid_example+1],
  border="blue"
)
# midpoints of these cells
points(
  rep(vx1_example_1_mid[k0],n_grid_example), vx2_example_1_mid, 
  col = colours["B"], pch = 4
)
Figure 3.9: The conditional c.d.f of \(x_2 | x_1\) in group \(s=0\).

And the estimated conditional quantiles of \(x_2 | x_1\) in the group \(s=1\), \(Q_{x_2|s=1[\cdot, \boldsymbol{i}]}\):

Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4),
      col = alpha(colours["A"],  F2_0[i,j]/3)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4),
      col = alpha(colours["B"],  Q2_1[i,j]/3)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
# identified cells in the dimension x1, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[1], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[n_grid_example+1],
  border="red"
)
# Identified cell in the dimension x2, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[i_0], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[i_0+1],
  border = "red", lwd = 2
)
# corresponding cells in the same dimension, in group 1
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[1], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[n_grid_example+1],
  border="blue"
)
Figure 3.10: The conditional quantiles of \(x_2 | x_1\) in group \(s=1\).

Lastly, we can identify the c.d.f. in the identified cell:

# c.d.f. for the closest cell in s=0 for x2 coordinates
(p <- F2_0[i_0, k0])
[1] 0.6

The corresponding quantile level:

(i_1 <- which.min(abs(u - p)))
[1] 7

And the quantile in group \(s=1\), which is therefore the transported value of \(x_2 | x_1\), \(T_2^*(x_2 | x_1)\):

(x2star <-  Q2_1[i_1, k1])
[1] 1.025227

The corresponding cell in group \(s=1\) for dimension \(x_2\):

(k2 <- which.min(abs(vx2_example_1 - x2star)))
[1] 4
indiv # factual
  S      X1          X2 Y
2 0 0.87045 0.008499458 1
tibble(S = 1, X1 = x1star, X2 = x2star) # counterfactual
# A tibble: 1 × 3
      S    X1    X2
  <dbl> <dbl> <dbl>
1     1  2.94  1.03
Codes used to create the Figure.
par(mar = c(2,2,0,0))
plot(
  vx1_example_0, vx2_example_0, 
  xlab = "", ylab = "", axes = FALSE, col = NA, 
  xlim = c(-4, 5), ylim = c(-4, 5)
)
axis(1)
axis(2)
# Grid for Group 0
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_0[i], ybottom = vx2_example_0[j], 
      xright = vx1_example_0[i+1], ytop = vx2_example_0[j+1],
      border = alpha(colours["A"], .4),
      col = alpha(colours["A"],  F2_0[i,j]/3)
    )
}
# Observed values
points(D_SXY_0$X1, D_SXY_0$X2, col = alpha(colours["A"], .4), pch = 19, cex = .1)
# Estimated density
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  add = TRUE
)
# Grid for Group 1
for (i in 1:n_grid_example) {
  for (j in 1:n_grid_example)
    rect(
      xleft = vx1_example_1[i], ybottom = vx2_example_1[j], 
      xright = vx1_example_1[i+1], ytop = vx2_example_1[j+1],
      border = alpha(colours["B"], .4),
      col = alpha(colours["B"],  Q2_1[i,j]/3)
    )
}
points(D_SXY_1$X1, D_SXY_1$X2, col = alpha(colours["B"], .4), pch = 19, cex = .1)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,col=scales::alpha(colours["B"], 1),
  add = TRUE
)
# Point of interest
points(indiv$X1, indiv$X2, col = "red", pch = 19)
# identified cells in the dimension x1, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[1], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[n_grid_example+1],
  border="red"
)
# Identified cell in the dimension x2, in group 0
rect(
  xleft = vx1_example_0[k0], ybottom = vx2_example_0[i_0], 
  xright = vx1_example_0[k0+1], ytop = vx2_example_0[i_0+1],
  border = "red", lwd = 2
)
# corresponding cells in the same dimension, in group 1
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[1], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[n_grid_example+1],
  border="blue"
)
rect(
  xleft = vx1_example_1[k0], ybottom = vx2_example_1[k2], 
  xright = vx1_example_1[k0+1], ytop = vx2_example_1[k2+1],
  border = "blue", lwd = 2
)
points(x1star, x2star, col = "black", pch = 19)
Transported value of (\(s=0, x_1, x_2\)) in group 0 to (\(s=1, x_1^* = T_1*(x_1), x_2^* = T_2^*(x_2 | x_1)\))

3.5 Larger grid

Let us now consider a much larger grid of \(500\times 500\) instead of \(10\times 10\).

n_grid <- 500
h <- .2

We can then compute the coordinates of each cell in each dimension, \(g_{j|s}\) for all variable \(j \in \{x_1,x2\}\). As the bounds of the feature space might differ between each group (0 and 1), we make different grids for each group.

# Group 0
## First dimension (x1)
vx1_0 <- seq(
  min(D_SXY_0$X1) - h, 
  max(D_SXY_0$X1) + h, 
  length = n_grid + 1
)
## Second dimension (x2)
vx2_0 <- seq(
  min(D_SXY_0$X2) - h, 
  max(D_SXY_0$X2) + h, 
  length = n_grid + 1
)
# Group 1
## First dimension (x1)
vx1_1 <- seq(
  min(D_SXY_1$X1) - h, 
  max(D_SXY_1$X1) + h, 
  length = n_grid + 1
)
## Second dimension (x2)
vx2_1 <- seq(
  min(D_SXY_1$X2) - h, 
  max(D_SXY_1$X2) + h, 
  length = n_grid + 1
)

Let us get the middle of each cell:

# Group 1
vx1_0_mid <- (vx1_0[2:(1 + n_grid)] + vx1_0[1:(n_grid)]) / 2
vx1_1_mid <- (vx1_1[2:(1 + n_grid)] + vx1_1[1:(n_grid)]) / 2
# Group 2
vx2_0_mid <- (vx2_0[2:(1 + n_grid)] + vx2_0[1:(n_grid)]) / 2
vx2_1_mid <- (vx2_1[2:(1 + n_grid)] + vx2_1[1:(n_grid)]) / 2

We compute the c.d.f. \(F_{j|s}\) and quantile functions \(Q_{j|s}\):

F1_0 <- F2_0 <- F1_1 <- F2_1 <- matrix(NA, n_grid, n_grid)
Q1_0 <- Q2_0 <- Q1_1 <- Q2_1 <- matrix(NA, n_grid, n_grid)

u <- (1:n_grid) / (n_grid + 1)

FdR1_0 <- Vectorize(function(x) mean(D_SXY_0$X1 <= x))
f1_0 <- FdR1_0(vx1_0_mid)
FdR2_0 <- Vectorize(function(x) mean(D_SXY_0$X2 <= x))
f2_0 <- FdR2_0(vx2_0_mid)
FdR1_1 <- Vectorize(function(x) mean(D_SXY_1$X1 <= x))
f1_1 <- FdR1_1(vx1_1_mid)
FdR2_1 <- Vectorize(function(x) mean(D_SXY_1$X2<=x))
f2_1 <- FdR2_1(vx2_1_mid)

Qtl1_0 <- Vectorize(function(x) quantile(D_SXY_0$X1, x))
q1_0 <- Qtl1_0(u)
Qtl2_0 <- Vectorize(function(x) quantile(D_SXY_0$X2, x))
q2_0 <- Qtl1_0(u)
Qtl1_1 <- Vectorize(function(x) quantile(D_SXY_1$X1, x))
q1_1 <- Qtl1_1(u)
Qtl2_1 <- Vectorize(function(x) quantile(D_SXY_1$X2, x))
q2_1 <- Qtl2_1(u)

Then we loop on the cells of the grid of \(x_1\) to compute the conditional c.d.f. in group 0 and 1, and the quantiles in group 0 and 1.

for (i in 1:n_grid) {
  idx1_0 <- which(abs(D_SXY_0$X1 - vx1_0_mid[i]) < d)
  FdR2_0 <- Vectorize(function(x) mean(D_SXY_0$X2[idx1_0] <= x))
  F2_0[, i] <- FdR2_0(vx2_0_mid)
  Qtl2_0 <- Vectorize(function(x) quantile(D_SXY_0$X2[idx1_0], x))
  Q2_0[, i] <- Qtl2_0(u)
  idx2_0 <- which(abs(D_SXY_0$X2 - vx2_0_mid[i]) < d)
  FdR1_0 <- Vectorize(function(x) mean(D_SXY_0$X1[idx2_0] <= x))
  F1_0[, i] <- FdR1_0(vx1_0_mid)
  Qtl1_0 <- Vectorize(function(x) quantile(D_SXY_0$X1[idx2_0], x))
  Q1_0[, i] <- Qtl1_0(u)
  idx1_1 <- which(abs(D_SXY_1$X1 - vx1_1_mid[i]) < d)
  FdR2_1 <- Vectorize(function(x) mean(D_SXY_1$X2[idx1_1] <= x))
  F2_1[, i] <- FdR2_1(vx2_1_mid)
  Qtl2_1 <- Vectorize(function(x) quantile(D_SXY_1$X2[idx1_1], x))
  Q2_1[, i] <- Qtl2_1(u)
  idx2_1 <- which(abs(D_SXY_1$X2 - vx2_1_mid[i]) < d)
  FdR1_1 <- Vectorize(function(x) mean(D_SXY_1$X1[idx2_1] <= x))
  F1_1[, i] <- FdR1_1(vx1_1_mid)
  Qtl1_1 <- Vectorize(function(x) quantile(D_SXY_1$X1[idx2_1], x))
  Q1_1[, i] <- Qtl1_1(u) 
}

Let us make predictions with the model presented in Section 4.6.3 on a grid:

vx0 <- seq(-5, 5, length = 251)
data_grid <- expand.grid(x = vx0, y = vx0)
L0 <- logistique_reg(x1 = data_grid$x, x2 = data_grid$y, s = 0)
L1 <- logistique_reg(x1 = data_grid$x, x2 = data_grid$y, s = 1)

# as a grid:
dlogistique0 <- matrix(L0, length(vx0), length(vx0))
dlogistique1 <- matrix(L1, length(vx0), length(vx0))

3.5.1 Functions for Sequential Transport

Let us define a function to perform the transport of \(x_0\) from \(s=0\) to \(s_1\), i.e., \(T_1^*(x_1)\)

#' Transport of x1 from s=0 to s=1
#' 
#' @param x2 vector of x2's values
#' @descriptions
#'  - vx1_0_mid: coordinates of center of cells (axis x1, s=0)
#'  - f1_0: c.d.f. values for x1 in group s=0
#'  - u: quantile levels
#'  - q1_1: quantile values for x1 in group s=1
transport_x1 <- function(x1) {
  # identify closest cell of the grid to the coordinates of x1 in group s=0
  i <- which.min(abs(vx1_0_mid - x1))
  # c.d.f. for that cell, in group s=0
  p <- f1_0[i]
  # identify closest quantile level
  i <- which.min(abs(u - p))
  # corresponding quantile in group s=1
  x1star <- q1_1[i]
  x1star
}

Another function to transport \(x_2\) from \(s=0\) to \(s=1\), i.e., \(T_2^*(x_2)\):

#' Transport of x2 from s=0 to s=1
#' 
#' @param x2 vector of x2's values
#' @descriptions
#'  - vx2_0_mid: coordinates of center of cells (axis x2, s=0)
#'  - f2_0: c.d.f. values for x2 in group s=0
#'  - u: quantile levels
#'  - q2_1: quantile values of x2 in group s=1
transport_x2 <- function(x2) {
  # identify closest cell of the grid to the coordinates of x2 in group s=0
  i <- which.min(abs(vx2_0_mid - x2))
  # c.d.f. for that cell, in group s=0
  p <- f2_0[i]
  # identify closest quantile level
  i <- which.min(abs(u - p))
  # corresponding quantile in group s=1
  x2star <- q2_1[i]
  x2star
}

A function to transport \(x_1\) conditionally on \(x_2\), i.e., \(T_1^*(x_1 | x_2)\):

#' Transport for x1 conditional on x2, from s=0 to s=1
#' 
#' @param x1 numerical vector with x1's values
#' @param x2 numerical vector with x2's values
#' @description
#'  - vx2_0_mid: coordinates of center of cells (axis x2, s=0)
#'  - vx2_1_mid: coordinates of center of cells (axis x2, s=1)
#'  - vx1_0_mid: coordinates of center of cells (axis x1, s=0)
transport_x1_cond_x2 <- function(x1, x2) {
  # identify closest cell in s=0 for x2 coordinate
  k0 <- which.min(abs(vx2_0_mid - x2))
  # identify closest cell in s=1 for transported x2 coordinate
  k1 <- which.min(abs(vx2_1_mid - transport_x2(x2)))
  # identify closest cell in s=0 for x1 coordinate
  i_0 <- which.min(abs(vx1_0_mid - x1))
  # c.d.f. for the closest cell in s=0 for x1 coordinates
  p <- F1_0[i_0, k0]
  # identify closest quantile level
  i_1 <- which.min(abs(u - p))
  # corresponding quantile in group s=1
  x1star <- Q1_1[i_1, k1]
  x1star
}

And a last function to transport \(x_2\) conditionally on \(x_1\), i.e., \(T_2^*(x_2 |x_1)\):

#' Transport for x2 conditional on x1, from s=0 to s=1
#' 
#' @param x2 numerical vector with x2's values
#' @param x1 numerical vector with x1's values
#' @description
#'  - vx1_0_mid: coordinates of center of cells (axis x1, s=0)
#'  - vx1_1_mid: coordinates of center of cells (axis x1, s=1)
#'  - vx2_0_mid: coordinates of center of cells (axis x2, s=0)
transport_x2_cond_x1 <-  function(x2, x1){
  # identify closest cell in s=0 for x1 coordinate
  k0 <- which.min(abs(vx1_0_mid - x1))
  # identify closest cell in s=1 for transported x1 coordinate
  k1 <- which.min(abs(vx1_1_mid - transport_x1(x1)))
  # identify closest cell in s=0 for x2 coordinate
  i_0 <- which.min(abs(vx2_0_mid - x2))
  # c.d.f. for the closest cell in s=0 for x2 coordinates
  p <- F2_0[i_0, k0]
  # identify closest quantile level
  i_1 <- which.min(abs(u - p))
  # corresponding quantile in group s=1
  x2star <-  Q2_1[i_1, k1]
  x2star
}
Codes used to create the Figure.
par(mar = c(2,2,0,0))
# Group 0
## Estimated density: level curves for (x1, x2) -> m(0, x1, x2)
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,col=scales::alpha(colours["A"], 1),
  axes = FALSE, xlab = "", ylab = ""
)
# Contour of estimates by the model
contour(
  vx0,
  vx0,
  dlogistique0,
  levels = (1:9) / 10,
  col = scl, lwd = 1.6,
  add = TRUE
)
axis(1)
axis(2)
Figure 3.11: Level curves for \((x_1, x_2) \rightarrow m(0, x_1, x_2)\) In the background, estimated density of \((s=0, x_1, x_2)\) (level curves).
Codes used to create the Figure.
# Group 1
## Estimated density: level curves for (x1, x2) -> m(1, x1, x2)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,
  col = scales::alpha(colours["B"], 1),
  axes = FALSE, xlab = "", ylab = ""
)
# Contour of estimates by the model
contour(
  vx0,
  vx0,
  dlogistique1, 
  col = scl,
  add = TRUE,
  levels = (1:9) / 10,
  lwd = 1.6
)
axis(1)
axis(2)
Figure 3.12: Level curves for \((x_1, x_2) \rightarrow m(1, x_1, x_2)\) In the background, estimated density of \((s=1, x_1, x_2)\) (level curves).

Let us focus on individual \((s, -2, 1)\).

xystart <- c(-2,-1)

The counterfactual with optimal transport:

(new_obs_ot <- OT(xystart))
[1] 0.6353342 1.8903242

Let us make multiple predictions for that individual, given the assumed structural model.

Figure 3.13: Causal network with two legitimate mitigating variables \(x_1\) and \(x_2\).
Figure 3.14: Causal network with two legitimate mitigating variables \(x_1\) and \(x_2\).
  • x2_then_x1: \(T_1^*(x1 | x2), T_2^*(x2)\), the transported value when assuming the structural model shown in Figure 3.14
  • x1_then_x2: \(T_1^*(x1), T_2^*(x2|x_1)\), the transported value when assuming the structural model shown in Figure 3.13
  • x1_intermediaire: \((T_1^*(x1), x2)\), the transported value for \(x_1\) only
  • x2_intermediaire: \((x1, T_2^*(x2))\), the transported value for \(x_2\) only.
coords <- data.frame(
  # 1. (x1, x2)
  start = xystart,
  # 2. (T_1(x1 | x2), T_2(x2))
  x2_then_x1 = c(
    transport_x1_cond_x2(x1 = xystart[1], x2 = xystart[2]),
    transport_x2(xystart[2])
  ),
  # 3. (T_1(x1), T_2(x2 | x1))
  x1_then_x2 = c(
    transport_x1(xystart[1]), 
    transport_x2_cond_x1(x2 = xystart[1], x1 = xystart[2])
  ),
  # 4. (T_1(x1), x2)
  x1_intermediaire = c(transport_x1(x1 = xystart[1]), xystart[2]),
  # 5. (x1, T_2(x2))
  x2_intermediaire = c(xystart[1], transport_x2(xystart[2])),
  # 6. T*(x1,x2)
  x_ot = c(new_obs_ot[1], new_obs_ot[2])
)

Then, we make predictions for all these points using the model.

library(plotrix)
v <- c(
  # 1. Prediction at initial values (S=0, x1, x2)
  logistique_reg(x1 = coords$start[1], x2 = coords$start[2], s = 0),
  # 2. Prediction if (S=1, x1, x2)
  logistique_reg(coords$start[1], coords$start[2], 1),
  # 3. Prediction if (S = 1, T_1(x1), T_2(x2 | x1))
  logistique_reg(coords$x1_then_x2[1], coords$x1_then_x2[2], 1),
  # 4. Prediction if (S = 1, T_1(x1 | x2), T_2(x2))
  logistique_reg(coords$x2_then_x1[1], coords$x2_then_x1[2], 1),
  # 5. Prediction if (S = 1, T_1(x1), x2)
  logistique_reg(coords$x1_intermediaire[1], coords$x1_intermediaire[2], 1),
  # 6. Prediction if (S = 1, x1, T_2(x2))
  logistique_reg(coords$x2_intermediaire[1], coords$x2_intermediaire[2], 1),
  # 7. Prediction if (S=1, T*(x1), T*(x2))
  logistique_reg(coords$x_ot[1], coords$x_ot[2], 1)
)
v
[1] 0.18242552 0.07585818 0.40945028 0.54065719 0.25576437 0.23658466 0.56533164

Let us first explore the mutatis mutandis difference \(m(s=1, x_1^*, x_2^*) - m(s = 0, x1, x_2)\). If we assume the causal structure as in Figure 3.13, it is equal to:

v[3] - v[1]
[1] 0.2270248

This can be decomposed as follows:

  1. the change du to the impact of \(s\) only, \(m(s=1,x_1,x_2) - m(s=0,x_1,x_2)\) (i.e., the ceteris paribus impact):
v[2] - v[1]
[1] -0.1065673
  1. the change due to the impact of \(s\) on \(x_1\), i.e., \(m(s=1,x^\star_1,x_2) - m(s=1,x_1,x_2)\):
v[5] - v[2]
[1] 0.1799062
  1. the change due to the impact of both \(s\) and \(x_1\) on \(x_2\), i.e., \(m(s=1,x^\star_1,x^\star_2) - m(s=1,x^\star_1,x_2)\):
v[3] - v[5]
[1] 0.1536859

If, instead, we assume the causal structure as in Figure 3.14, the mutatis mutandis effect, \(m(s=1, x_1^*, x_2^*) - m(s = 0, x1, x_2)\), would be:

v[4] - v[1]
[1] 0.3582317

This can be decomposed as follows:

  1. the change du to the impact of \(s\) only, \(m(s=1,x_1,x_2) - m(s=0,x_1,x_2)\) (i.e., the ceteris paribus impact):
v[2] - v[1]
[1] -0.1065673
  1. the change due to the impact of \(s\) on \(x_2\), i.e., \(m(s=1,x_1,x_2^*) - m(s=1,x_1,x_2)\):
v[6] - v[2]
[1] 0.1607265
  1. the change due to the impact of both \(s\) and \(x_2\) on \(x_1\), i.e., \(m(s=1,x^\star_1,x^\star_2) - m(s=1,x_1,x_2^*)\):
v[4] - v[6]
[1] 0.3040725

Let us visualize this! We begin with the predicted value by the model.

par(mar = c(2, 2, 0, 0))
# Group 0
## Estimated density: level curves for (x1, x2) -> m(0, x1, x2)
CeX <- 1
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,
  col = scales::alpha(colours["A"], .3),
  axes = FALSE, xlab = "", ylab = ""
)
# Group 1
## Estimated density: level curves for (x1, x2) -> m(1, x1, x2)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,
  col = scales::alpha(colours["B"], .3), add = TRUE
)
contour(
  vx0, vx0, dlogistique0,
  levels = (1:9)/10,
  col = scl,
  add = TRUE,lwd = 2
)
axis(1)
axis(2)

###
# Individual (S=0, x1=-2, x2=-1)
###
points(coords$start[1], coords$start[2], pch = 19, cex = CeX)
## Predicted value for the individual, based on factuals
text(
  coords$start[1], coords$start[2],
  paste(round(v[1] * 100, 1), "%", sep = ""), 
  pos = 1, cex = CeX, col = "darkblue"
)
Figure 3.15: The predicted value by the model, \(m(s=0, x_1, x_2)\)

And then we can show the the predictions made on the counterfactuals depending on the causal assumption.

par(mar = c(2, 2, 0, 0))
# Group 0
## Estimated density: level curves for (x1, x2) -> m(0, x1, x2)
contour(
  f0_2d$eval.point[[1]],
  f0_2d$eval.point[[2]],
  f0_2d$estimate,
  col = scales::alpha(colours["A"], .3),
  axes = FALSE, xlab = "", ylab = ""
)
# Group 1
## Estimated density: level curves for (x1, x2) -> m(1, x1, x2)
contour(
  f1_2d$eval.point[[1]],
  f1_2d$eval.point[[2]],
  f1_2d$estimate,
  col = scales::alpha(colours["B"], .3), add = TRUE
)

# Contour of estimates by the model for s=1
contour(
  vx0, vx0, dlogistique1,
  levels = (1:9) / 10,
  col = scl, lwd=2,
  add = TRUE
)
axis(1)
axis(2)

###
# Individual (s=0, x1=-2, x2=-1)
###
points(coords$start[1], coords$start[2], pch = 19, cex = CeX)
## Predicted value for the individual, based on factuals
text(
  coords$start[1] - .3, coords$start[2] - .42 - .3,
  paste(round(v[1] * 100, 1), "%", sep = ""), 
  pos = 1, cex = CeX, col = "darkblue"
)

###
# Transported individual when transporting x1 and then x2, i.e.,
# (do(s=1), T_1^*(x1), T_2^*(x_2 | x_1))
###
points(coords$x1_then_x2[1],coords$x1_then_x2[2], pch = 19, cex = CeX)
segments(
  x0 = coords$start[1], y0 = coords$start[2], 
  x1 = coords$x1_then_x2[1], y1 = coords$start[2], 
  lwd = .8
)
segments(
  x0 = coords$x1_then_x2[1], y0 = coords$x1_then_x2[2],
  x1 = coords$x1_then_x2[1], y1 = coords$start[2], 
  lwd = .8
)
## Intermediate point
points(coords$x1_then_x2[1], coords$start[2], pch = 19, col = "white", cex = CeX)
points(coords$x1_then_x2[1], coords$start[2], pch = 1, cex = CeX)
text(
  coords$x1_then_x2[1], coords$start[2] - .42,
  paste(round(v[5] * 100, 1), "%", sep = ""), pos = 4, cex = CeX
)
# New predicted value for # (do(s=1), T_1^*(x1), T_2^*(x_2 | x_1))
text(
  coords$x1_then_x2[1], coords$x1_then_x2[2],
  paste(round(v[3]*100,1),"%",sep=""), pos = 3, cex = CeX
)

###
# Transported individual when transporting x2 and then x1, i.e.,
# (do(s=1), T_1^*(x1 | x2), T_2^*(x_2))
###
points(coords$x2_then_x1[1],coords$x2_then_x1[2],pch=19,cex=CeX)
segments(
  x0 = coords$start[1], y0 = coords$start[2],
  x1 = coords$start[1], y1 = coords$x2_then_x1[2],
  lwd = .8
)
segments(
  x0 = coords$x2_then_x1[1], y0 = coords$x2_then_x1[2],
  x1 = coords$start[1], y1 = coords$x2_then_x1[2],
  lwd = .8
)
## Intermediate point
points(coords$start[1], coords$x2_then_x1[2], pch = 19, col = "white", cex = CeX)
points(coords$start[1], coords$x2_then_x1[2], pch = 1, cex = CeX)
text(
  coords$start[1], coords$x2_then_x1[2],
     paste(round(v[6] * 100, 1), "%", sep = ""), pos = 2, cex = CeX
)
## New predicted value for (do(s=1), T_1^*(x1 | x2), T_2^*(x_2))
text(
  coords$x2_then_x1[1], coords$x2_then_x1[2],
  paste(round(v[4] * 100, 1), "%", sep = ""), pos = 3, cex = CeX
)


###
# New predicted value for (do(s=1), x1, x2), no transport
###
ry <- .2
plotrix::draw.circle(
  x = coords$start[1] - ry, y = coords$start[2] - ry, 
  radius = ry * sqrt(2)
)
text(
  coords$start[1], coords$start[2] + .42,
  paste(round(v[2] * 100, 1), "%", sep = ""), pos = 4, cex = CeX
)

###
# Transported individual with optimal multivariate transport
###
points(coords$x_ot[1],coords$x_ot[2], pch = 15, cex = CeX, col = "#C93312")
segments(
  x0 = coords$start[1], y0 = coords$start[2], 
  x1 = coords$x_ot[1], y1 = coords$x_ot[2], 
  lwd = .8,
  col = "#C93312", lty = 2
)
text(
  coords$x_ot[1], coords$x_ot[2],
  paste(round(v[7] * 100, 1), "%", sep = ""), pos = 4, cex = CeX,
  col = "#C93312",
)
Figure 3.16: In the background, level curves for\(m(1,x_1,x_2)\). Two counterfactuals are depicted by the black dots \((s=1,x_1^\star,x_2^\star)\) according to a causal graph where \(x_2\) depends on \(x_1\) (bottom left path, predicted 40.9%) and a causal graph where \(x_1\) depends on \(x_2\) (top left path, predicted 54.1%). The red square shows the counterfactual obtained with optimal transport (with a predicted value by model \(m\) at 56.5%).